Publications


Grenade, N. L.; Howe, G. W.; Ross, A. C. The Convergence of Bacterial Natural Products From Evolutionarily Distinct Pathways. Curr. Opin. Biotechnol. 2021, 69, 17. DOI: https://doi.org/10.1016/j.copbio.2020.10.009

14.

13.

Howe, G. W.°; van der Donk, W. A°. Temperature Independent Kinetic Isotope Effects as Evidence for a Marcus-like Model of Hydride Tunneling in Phosphite Dehydrogenase. Biochemistry 2019, 58, 4260. [° indicates corresponding authorship] DOI: 10.1021/acs.biochem.9b00732

12.

Bielecki, M.; Howe, G. W.; Kluger, R. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates. Biochemistry 2019, 58, 3566. DOI: 10.1021/acs.biochem.9b00298

11.

Howe, G. W.°; van der Donk, W. A°. Oxygen-18 Kinetic Isotope Effects Reveal an Associative Transition State for Phosphite Dehydrogenase Catalyzed Phosphoryl Transfer. J. Am. Chem. Soc. 2018, 140, 17820. [° indicates corresponding authorship] DOI: 10.1021/jacs.8b06301.

10.

Bielecki, M.; Howe, G. W.; Kluger R. Charge Dispersion and Its Effects on the Reactivity of Thiamin-Derived Breslow Intermediates. Biochemistry 2018, 57, 3867. DOI: 10.1021/acs.biochem.8b00463

9.

Vandersteen, A. A.*; Howe, G. W.*; Lollar, B. S.; Kluger, R. Carbon Kinetic Isotope Effects and the Mechanisms of Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid and Carbon Dioxide Incorporation into 1,3-Dimethoxybenzene J. Am. Chem. Soc. 2017, 139, 15049. [* indicates joint authorship] DOI: 10.1021/jacs.7b07504

8.

Heidari, Y.; Howe, G. W.; Kluger R. The Reactivity of Lactyl-Oxythiamin Implies the Role of the Aminopyrimidine in Thiamin Catalyzed Decarboxylation. Bioorg. Chem. 2016, 69, 153. DOI: 10.1016/j.bioorg.2016.10.008

7.

Howe, G. W.*; Vandersteen, A. A.*; Kluger, R. How Acid-Caatalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid Avoids Formation of Protonated Carbon Dioxide. J. Am. Chem. Soc. 2016, 138, 7568. [* indicates joint authorship] DOI: 10.1021/jacs.6b01770

6.

Bielecki, M.; Howe, G. W.; Kluger, R. Lithium-Stabilized Nucleophilic Addition of Thiamin to a Ketone Provides an Efficient Route to Mandelylthiamin, a Critical Pre-Decarboxylation Intermediate. Bioorg. Chem. 2015, 62, 124. [* indicates joint authorship] DOI: 10.1016/j.bioorg.2015.08.004

5.

Howe, G. W.; Kluger, R. Decarboxylation without Carbon Dioxide: Why Bicarbonate Forms Directly as Trichloroacetate Is Converted to Chloroform. J. Org. Chem. 2014, 79, 10972. DOI: 10.1021/jo501990u

4.

Kluger, R.; Howe, G. W.; Mundle, S. O. C. Avoiding Carbon Dioxide in Catalysis of Decarboxylation. Adv. Phys. Org. Chem. 2013, 47, 85. DOI: 10.1016/B978-0-12-407754-6.00002-8

3.

Howe, G. W.; Bielecki, M.; Kluger, R. Base-Catalyzed Decarboxylation of Mandelylthiamin: Direct Formation of Bicarbonate as an Alternative to Formation of Carbon Dioxide. J. Am. Chem. Soc. 2012, 134, 20621. DOI: 10.1021/ja310952a

 

Article spotlighted in JACS - J. Am. Chem. Soc. 2013, 135, 1165.

2.

Mundle, S. O. C.; Howe, G. W.; Kluger, R. Origins of Steric Effects in General-Base-Catalyzed Enolization: Solvation and Electrostatic Attention. J. Am. Chem. Soc. 2012, 134, 1066. DOI: 10.1021/ja2085959

1.

Jahnke, A. A.; Howe, G. W.; Seferos, D. S. Polytellurophenes with Properties Controlled by Tellurium-Coordination. Angew. Chem. Int. Ed. 2010, 49, 10140. DOI: 10.1002/anie.201005664